Computers as Ethical Machines

It’s amazing how busy life gets sometimes… Here’s the third and final paper. You can find the first here, and the second here. Enjoy!

Throughout recent history, we have grown ever more dependent on computers as they have become an integral part of everyday life. Since their successful use in World War II, computers have been constantly improved, making them capable of a variety of tasks. Computers are used to automate menial and sometimes dangerous tasks, control high tech weaponry such as robots and rockets, and provide entertainment through games and movies. As computer technology improves, computers are even being used to teach moral and ethical lessons. In the hands of the nefarious, computers can be used to cause mischief and destruction. Computers are blamed for the loss of jobs, dehumanization of society, and even negatively influencing children. Computers can be used to help or harm, directed purely by the whim of the user. Despite these shortcomings, this paper will show that computers have had an advantageous affect on society.

When computers came on the scene in the 1940’s, they were mostly limited to scientific and mathematical functions. Early computers were used to help break ciphers during World War II. In the 1950’s, computers found their way into colleges across the United States, destined to be used as research tools. However, students at MIT had other plans. [1] Members of the Tech Model Railroad Club were fascinated by these new devices and aimed to learn all they could about them. Over time, they helped transform computers from simple research tools into general purpose devices that could be used for a myriad of tasks. But despite these breakthroughs, society still held a negative view of computers and computer technology.

Resistance to technological advancement is not a new phenomenon. It is not uncommon for new laws to be crafted specifically to limit the use of new technologies. For instance, after the invention of the car, a law was passed that required “any motorist who sighted a team of horses coming toward them to pull well off the road, cover their car with a blanket or canvas that blended with the countryside, and let the horses pass.” [2] While ridiculous by today’s standards, this law was passed in order to make owning and driving a car difficult. Over time, cars became an accepted and beneficial part of society and laws impeding their use were slowly rescinded.

Computers have faced similar resistance through their history. While computers were initially used as nothing more than fancy calculation devices, visionaries saw a myriad of potential uses. Combining computes with mechanical devices, researchers were able to create automated machinery capable of completing menial tasks. The first such robotic device, designed by the Unimation company and called the Unimate, was installed in 1961. [3] The Unimate was a robotic arm used by automotive manufacturers in a die casting machine. It automated what was generally considered to be a dangerous task, that of moving die castings into position and welding them to the body of a vehicle. Human workers were at risk of inhaling deadly exhaust fumes or losing limbs if there were an accident. But despite being a capable device, adoption was slow due to a general resistance to change within the manufacturing industry.

Perception of automated machinery was different in Japan, however. After the introduction of the Unimate, Japanese interest in robotics blossomed. By 1968, Kawasaki Heavy Industries, a Japanese company, licensed all of Unimation’s technology. Japan’s keen interest in robotics may be one of the reasons that Japanese manufacturing advanced so far ahead of the rest of the world and continues to remain there. One reason for this interest may have to do with the exacting standards that most Japanese businesses subscribe to. In the Japanese culture, failure is frowned upon to such a degree that suicide is often chosen over shame. [4]

Japan’s interest in robotics sparked a general interest throughout the rest of the industrialized world. Robotic machinery began appearing in businesses throughout the United States. With this came outrage that machinery was replacing human workers. Over time, however, resistance to robotics quelled as the potential benefits of robotic workers were realized. Workers were encouraged to learn new skills such as maintaining and operating their robotic replacements. Overall, while some jobs were lost, it was not nearly the catastrophic loss that many predicted.

In the years since the introduction of the Unimate, the robotics industry has blossomed. Robots can be found in many industrial plants handling dangerous or labor intensive jobs. Jobs lost to robotic replacement have morphed into other positions, often with the same company. Robots have helped to both increase output and reduce loss due to mistakes and injuries.

Robots have also found a place in our everyday lives. iRobot, one of the first successful commercial manufacturers of household robots, created the Roomba line of household robots. [5] The Roomba is a small circular robot with two drive wheels and three brushes. The Roomba’s primary purpose is to drive itself around a room and vacuum up dirt and debris. It contains a sophisticated computer system that maps the room as it moves, ensuring that every part of the room is vacuumed. It has a host of sensors used to prevent collisions and even avoid stairways. Currently, iRobot has a complete line of household robots including robots that mop floors, clean gutters, and even clean pools.

After the 9/11 attacks, iRobot, and competitor Foster-Miller, used their robots to search for survivors. Serving as a sort-of test ground, the success of these robots during the 9/11 tragedy provided the military with the incentive they needed to offer both companies military contracts. [6] Since that time, both iRobot and Foster-Miller have provided the military with thousands of robots. These robots serve purposes ranging from disarming IEDs to full-on attack vehicles complete with weaponry.

Robotic weaponry brings with it a number of ethical and moral dilemmas. For starters, ethicists worry that robots can not be trusted to make proper ethical decisions. Robots are notorious for misinterpreting sensory data and making improper decisions based on faulty input. On the other hand, if a robot has the correct data, it has no problem quickly making a decision. Unfortunately, there aren’t always clear-cut right and wrong answers. It remains to be seen whether roboticists will be able to create an autonomous system capable of adapting to any given situation and making ethically supportable decisions.

The manufacturing industry has not been the only realm to benefit from computer innovation and creativity. Computers also found a place within the entertainment industry. Steve Russell, a hacker at the MIT computer lab, created the first video game, Spacewar, in 1962. During the same time period, Ivan Sutherland, another MIT hacker, developed a graphics program called Sketchpad which allowed the user to draw shapes on the computer screen using a light pen. Ivan went on to become a professor of computer graphics at the University of Utah, and is considered to be the creator of computer graphics.

The University of Utah quickly made a name for itself as the premiere school for computer graphics research. Many of the techniques currently used in computer graphics were invented by students studying there. For instance, Ed Catmull discovered texture mapping, a method for applying a graphical image to a 3D object. Texture mapping allowed computer scientists to add a new layer of realism to their creations. Ed Catmull went on to become president of Walt Disney Animation Studios.

Computer graphics capabilities have increased over the years. In the 1970’s, state of the art was computer wireframe images. While the 1973 film Westworld included scenes that were post-processed by computers, it wasn’t until 1976 that 3D wireframe images were used for the first time in a movie, Futureworld. [7] In the coming years, computer aided movie design became more and more common.

Using computer generated images, CGI, in movies allows a filmmaker to take their vision further than they could otherwise. For example, prior to using computers, techniques for superimposing an actor onto an artificial background, a process known as bluescreening, was a painstaking process. Using computers, this process can be done with relative ease. The use of computers saves filmmakers both time and money in addition to being able to create realistic scenes such as people flying, or exploration of alien landscapes.

With the advent of cheaper, faster computers, CGI sequences are becoming more commonplace in both movies and television. CGI sequences can be used in place of elaborate sets and backdrops, often removing the need to travel to exotic locations. Filmmakers can make changes to the sequences, even after filming has been completed, adding or removing minute details that would have otherwise had to remain. This allows filmmakers a large amount of flexibility when bringing their vision to life.

In addition to CGI, computers are also used for post-processing. Post processing allows a filmmaker to add and remove elements of a scene, even non-CGI scenes, and adjust various details. For instance, lighting can be adjusted and special effects such as the glow of a lightsaber can be added. Through the use of computers, almost any image adjustment is possible, even those of a questionable nature. Take, for instance, the following two examples.

In July of 2008, Iran was set to meet with the United Nations about its nuclear program. Prior to the meeting, Iran, in what was considered a show of power, announced that it had successfully launched a number of medium range missiles. The Iranian Revolutionary Guard Corps posted a photo of the launch on their website. At the same time, photos were released to various news organizations around the world. After the photos were released, however, several experts began to have doubts about the authenticity of the photos. In fact, it appeared that the photos were altered, possibly to cover up a malfunction in one of the missile systems. [8]

In November of 2008, North Korea released a photo of their leader, Kim Jong Il, standing with a company of soldiers. There were scattered reports that Kim Jong Il had suffered a stroke in previous months and was not in good health. It was believed that this image was released by the North Korean government as proof of their leaders health. Upon closer inspection, however, experts believe that the image of Kim Jong Il was added into the photo using photo editing software. As with the Iranian incident, this photo was believed to be a political maneuver. [9]

In both of these situations, photo manipulation was used for political purposes. Both Iran and North Korea are countries with a questionable government, often at odds with many of the members of the United Nations. Each heavily censors the media, seeking to control what its population knows. Despite this, technology is often used by the populace to fight against the government.

During the 2009 elections in Iran, Iranians used online services such as Twitter and YouTube to post information about demonstrations and protests being held against the government. In fact, Iranian use of Twitter was considered so important that the US State Department urged Twitter to reschedule a maintenance so Iranians would have access during one of the demonstrations. [10] Iranian Twitter users posted first-hand accounts of protests, thoughts and feelings about the election, and, in some cases, links to videos showing alleged violence by government agents. One video showed a young woman, Neda Agha-Soltan, die on the road after being shot. [11] This video quickly went “viral,” becoming one of the most viewed videos of the moment, despite showing a rather graphic scene.

Technology helped the Iranian people show the world what was happening to their country. Some supporters helped by setting up Internet proxy sites, places where Iranians could gain Internet access outside of their country. Other supporters helped by attacking Iranian governmental websites. Both are examples of cyber-warfare, a relatively new way of fighting against opposing forces. The ethics behind such attacks are often muddied by the circumstances of the situation. In the case of Iran, hackers justified their actions by pointing out the real violence occurring in the country as well as the censorship being used to prevent Iranians from speaking to the outside world. Regardless of such justifications, hacking for the purposes of denying access or defacing property is generally frowned upon and is often illegal.

Hacking was not originally a negative activity. In the early days of computing, and even somewhat before, hacking was viewed as a positive activity by an eclectic group of individuals. To hack something was to modify it in a useful way. Hacking was often seen as a way to learn about a new device or process while simultaneously improving upon it. Early hackers went on to develop technologies such as those that run the Internet today.

As computers became more mainstream and began to appear in homes, a new breed of hacker was born. Computers were seen as both business and entertainment devices and companies had formed to offer software for both categories. Computer game companies quickly grew into large corporations which quickly fell into the routine of offering up the same old game in a shiny new wrapper. Seeking something new, some young hackers began learning how to build their own games.

John Carmack was one of those hackers. John started out hacking on an Apple II computer, creating simple games before moving on to work for a small software publishing company. After releasing a few simple games, he helped form his own company, Id Software. Id Software’s first product was a 3D first-person shooter called Doom. Doom was a breakthrough in computer gaming, offering one of the first 3D experiences ever seen on a personal computer. It was also an extremely violent game, pitting the player against a host of enemies depicted as creatures from hell. [12]

The violent nature of Doom and other games was blamed for the 1999 Columbine high school shootings. Opponents of violent games argue that video games desensitize children. They also argue that games such as Doom train them to use weapons and teach them that killing is OK. While lawsuits against game companies were filed, they were ultimately dismissed. [13] Despite this, debates continue today as to the relative merit of games, especially those with violent content.

Violence in games seems to be taking on a new role, however. Some games are beginning to include deep storylines, including moral choices that the player must make. One simple example of this is a game called Passage. [14] Passage is a very low-tech game using very simple graphics written as an entry in a game programming contest. What sets Passage apart is that while it is simple, it seems to contain a powerful message. The game consists of wandering around in a small world. As you move about the world you’re in, you encounter obstacles which you must maneuver around. If you encounter the female character in the game, you become a larger pair which limits your movement, effectively blocking off some areas of the world. Finally, the game only lasts 5 minutes during which your character ages and eventually dies. According to the developer, Passage was written to be a game about life.

Passage is a very low budget, very simplistic game, however, and not many people get a chance to see or play it. For better or worse, it’s the high-budget, mainstream games that get the most attention. But even here, things are beginning to change. In 2009, leaked footage from a high-profile game, Modern Warfare 2, was released. In the footage, the player’s character moved through a highly detailed airport, complete with hundreds of people going through the motions of coming and going. The player held a fully automatic weapon and was traveling through the airport with a number of other companions, all dressed in military garb. Most shocking of all, the player and his companions were shooting into the crowds, tossing grenades, and wreaking havoc. [15]

This footage caused an immediate uproar from the public. The developers defended their position saying that the scenario made sense within the universe of the game. Within the storyline, the player is an undercover agent who has been placed within a terrorist group. The airport scene is played out as an act of terrorism perpetrated by that group. Players are faced with a moral dilemma, having to decide whether the end mission is worth turning a blind eye, or whether they should break cover and attack the terrorists. In the end, the decision is ultimately with the player. It forces the player to think about the situation, often making them feel uncomfortable.

That a set of colored pixels on a screen can make a player feel uncomfortable about a fictional moral dilemma is truly interesting. Technology is being used to provide an ethical situation for someone to solve. If the player makes a “wrong” decision, the computer can help play out that scenario, providing instant feedback for the player without actually harming anyone. Computers can be used, effectively, to teach a player about ethics.

Computers continue to have a wide ranging effect on daily life. They help to make our lives easier in more ways than the average person realizes. And while there are instances where computers and technology in general can be used in negative ways, computers remain an important part of society. Ultimately, computers have provided us with the convenience and comfort we have grown used to having. They have had an overwhelmingly positive effect on society making them a true asset.
References

[1] . Levy, Hackers : Heroes of the Computer Revolution. London: Penguin, 1994.
[2] (2010, April 29) Dumb Laws in Pennsylvania. [Online]. Available: http://www.dumblaws.com/laws/united-states/pennsylvania
[3] S. Nof, Handbook of Industrial Robotics. New York: Wiley, 1999.
[4] E. Petrun. (2010, April 29) Suicide in Japan. [Online]. Available: http://www.cbsnews.com/stories/2007/07/12/asia_letter/main3054259.shtml
[5] L. Kahney. (2010, May 3) Forget a Maid, This Robot Vacuums. [Online]. Available: http://www.wired.com/gadgets/miscellaneous/news/2002/12/56962
[6] P. Singer, Wired for War : the Robotics Revolution and Conflict in the Twenty-first Century. New York: Penguin Press, 2009.
[7] C. Machover, “Springing into the Fifth Decade of Computer Graphics – Where We’ve Been and Where We’re Going!” Siggraph, 1996.
[8] A. Kamen. (2010, May 3) Iran Apparently in Possession of Photoshop. [Online]. Available: http://www.washingtonpost.com/wp-dyn/content/article/2008/07/10/AR2008071002709.html
[9] N. Hines. (2010, May 3) Photoshop Failure in Kim Jong Il Image? [Online]. Available: http://www.timesonline.co.uk/tol/news/world/asia/article5099581.ece
[10] L. Grossman. (2010, May 4) Iran Protests: Twitter, the Medium of the Movement. [Online]. Available: http://www.time.com/time/world/article/0,8599,1905125,00.html
[11] (2010, May 4) ‘Neda’ Becomes Rallying Cry for Iranian Protests. [Online]. Available: http://www.cnn.com/2009/WORLD/meast/06/21/iran.woman.twitter/
[12] L. Grossman. (2010, May 4) The Age of Doom. [Online]. Available: http://www.time.com/time/magazine/article/0,9171,1101040809-674778,00.html
[13] M. Ward. (2010, May 4) Columbine Families Sue Computer Game Makers. [Online]. Available: http://news.bbc.co.uk/2/hi/science/nature/1295920.stm
[14] C. Thompson. (2010, May 4) Poetic Passage Provokes Heavy Thoughts on Life, Death. [Online]. Available: http://www.wired.com/gaming/gamingreviews/commentary/games/2008/04/gamesfrontiers_421
[15] T. Kim. (2010, May 4) Modern Warfare 2: Examining the Airport Level. [Online]. Available: http://www.gamepro.com/article/features/212923/modern-warfare-2-examining-the-airport-level/

 

Leave a Reply

Your email address will not be published. Required fields are marked *